首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   5篇
  国内免费   1篇
  2017年   3篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   11篇
  2011年   9篇
  2010年   12篇
  2009年   4篇
  2008年   5篇
  2007年   17篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1971年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
31.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   
32.
Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP‐glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose‐dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light‐activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch‐to‐sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography–mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.  相似文献   
33.
34.
Plant defences vary in space and time, which may translate into specific herbivore‐foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within‐plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4‐benzoxazin‐3‐one derivatives (BXDs), affects the foraging behaviour of two leaf‐chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well‐adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD‐free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non‐adapted herbivores and thereby likely contribute to feeding niche differentiation.  相似文献   
35.
Erica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco‐physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood‐anatomical analyses and stable isotopes measurements. Intra‐annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site‐specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the 13C‐derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ18O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree‐ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics.  相似文献   
36.
Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive 11CO2, we demonstrate that root‐attacked maize plants allocate more new 11C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem‐borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root‐attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore‐induced carbon reallocation needs to be taken into account when studying plant‐mediated interactions between herbivores.  相似文献   
37.
Abstract Most studies of insect reproductive allocation concentrate on propagule size and number and very few consider egg composition, which is likely to be equally important. In the present study, data are provided on changes in egg lipid, glycogen, free carbohydrate and protein during embryonic development of the aphidophagous ladybird Adalia bipunctata (L.) and the compositions of A. bipunctata, Adalia decempunctata and Anisosticta novemdecimpunctata eggs are compared. In A. bipunctata, egg mass, lipid and glycogen decline strongly during development and egg protein declines more weakly. Free carbohydrate declines early in egg development and increases at egg hatching. Lipid is energetically the most important developmental fuel, although approximately half of the initial egg lipid remains in the neonate larva. Across the three species, energy per unit egg mass is lowest in the least specialized species, A. bipunctata, which also has the largest eggs, and is highest in the most specialized, An. novemdecimpunctata, which has the smallest eggs. Two possible explanations for the observed pattern are discussed: (i) species laying smaller eggs may incur higher developmental costs per unit mass than species laying larger eggs and (ii) more specialized species, which reproduce at lower aphid densities, may provision neonate larvae better to facilitate location and capture of aphids.  相似文献   
38.
Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method‐specific composition and storage of BC, i.e. BPCA‐BC, in a 0.44 km2‐sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA‐BC export with the stream draining the catchment. The catchment is composed of various landscape units with south‐southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north‐northeast (NNE) faced mineral soils with thin active layer, and permafrost‐affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA‐BC amounted to 0.6–3.0% of OC. This corresponded to a BC storage of 22–3440 g m?2. The relative contribution of BPCA‐BC to OC, as well as the absolute stocks of BPCA‐BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA‐BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA‐BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA‐BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA‐BC m?2 was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean.  相似文献   
39.
40.
It is attempted determine the diet breadth and to quantify the predator pressure by Ocypus similis (F.) (Coleoptera: Staphylinidae), a dominant species of the rove beetle fauna in a winter wheat field. Laboratory and field experiments were conducted to determine the range of prey taxa and the consumption of a whole predator generation (including larvae) during its activity in the field. In laboratory experiments, adults and larvae of O. similis fed on a variety of prey except spiders and larvae of soldier beetles (Cantharidae), but they preferred millipedes as food (Diplopoda: Julidae, Polydesmidae). This preference could also be observed in the field. Although the predator population reached its maximum density in April, highest predator pressure occurred in June because of high consumption rates during the second larval stage. Adult beetles and the individuals of the second larval stage contributed both about 1/3 to total population consumption. Predation by adult beetles was mainly restricted to early spring and summer while larval consumption was highest from April to July. The staphylinids reduced the population density of diplopods by 7–35%. Because millipedes are an important part of the decomposer community, predator activity may lead to a decrease of decomposition rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号